JB

中华人民共和国机械行业标准

JB / T 7403-94

光照度计

光照度计

1 主题内容与适用范围

本标准规定了光照度计的产品分类、技术要求、试验方法、检验规则、标志、包装、运输、贮存等。

本标准适用于光度头探测器为硅光电池、**硅光电二极管**和晒光电池的光照度计。光度头探测器为光电管的光照度计亦可参照使用。

2 引用标准

GB 2829 周期检查计数抽样和抽样表 (适用于生产过程稳定性的检查)

JB 5517 光学仪器电气防护基本安全要求

ZBY 002 仪器仪表运输、运输贮存基本环境条件及试验方法

ZBY 003 仪器仪表包装通用技术条件

3 产品分类

3.1 产品类型

光照度计按读数类型分为指针式光照度计和数字式光照度计。

3.2 产品等级

产品等级分为标准级、一级、二级、三级共四个等级。

4 技术要求

4.1 示值误差

示值误差不超过表1的规定。

表 1

级 别	标 准	一 级	二级	三 级
示值误差	±1.5	±4.0	±6.0	±8.0

4.2 光度头(光照度计的受光探头)滤光器的 V(λ)匹配误差

光度头滤光器的光谱响应度对应 CIE 明视**觉光谱光视效率** V(λ) 的匹配误差不超过表 2 的规定。

7111	W JO JU	T(N) HIESHOULET MAKEN DI	1/20/200
	表 2		%

级 别	标 准	一 级	二级	三 级
滤光器的 V(x)匹配误差	3.0	5.0	7 . 0	9.0

4.3 方向性响应总误差

在 85 范围内, 方向性响应总误差不超过表 3 的规定。

表 3

表3				%
级别	标准	一 级	二级	三级
方向性响应总误差	3.0	4.0	5.0	8.0

4.4 红外响应误差

红外响应误差不超过表 4 的规定。

表 4

级 别	标 准	级	二级	三级
红外响应误差	1.0	2.0	4.0	6.0

4.5 紫外响应误差

紫外响应误差不超过表 5 的规定。

表 5

4B Ed	#= ¥# .	4R	- 412	= 级
	你催		<u> </u>	<u></u> — 秋
紫外响应误差	0.5	1.0	2.0	4.0

4.6 疲劳误差

疲劳误差不超过表 6 的规定。

j	级 别	标准	一 级	二级	三级
	疲劳误差	-0.2	-0.5	-1.0	-2.0

4.7 非线性误差

各档的非线性误差不超过表7的规定。

表 7

级别	标准	一级	二级	三 级
非线性误差	± 0.3	±1 .0	± 2.0	±5.0

4.8 换挡误差

换档误差不超过表 8 的规定。

表 8

级 别	标 准	一 级	二级	三 级
换档误差	±0.3	±1.0	±2.0	± 4.0

4.9 示值再现性

示值再现性不超过表 9 的规定。

表 9

级 别	标 准	一 级	二级	三 级
示值再现性	0.1	0.5	1.0	2.0

4.10 零点飘移

零点飘移不超过表 10 的规定。

孝 10

级 别	标准	一级	二级	三 级
零点飘移(相对满量程)	± 0.2	±0.5	±1.0	± 2.0

4.11 温度系数

温度系数不超过表 11 的规定。

表 11

(%/°C)

级 别	标 准	一 级	二级	三 级
温度系数	±0.2	±0.5	±1.0	±1.5

4.12 仪器外观和感官要求

- a. 仪器的外表面不应有毛刺、划痕, 锐边应倒被, 接合处应齐整。光度头表面应光洁;
- b. 涂、镀层应牢固, 不应有褪色、剥落和锈斑。相同的涂、镀层颜色应均匀一致;
- c.刻线、刻字、数字显示应清晰、均匀,不应有妨碍读数和测量的断划、锈蚀、耀光等现象;
- d. 以电池供电的光照度计, 应具有欠电压指示功能;
- e. 开关、调节旋钮等活动部分应轻便、灵活和舒适;
- f. 各种附件装卸应稳定可靠, 配合和定位应准确;
- g. 指针式光照度计不应有卡针或指针弯曲变形的现象。

4.13 电气安全性能

仪器应符合 JB5517 的规定。

4.14 贮运环境条件

仪器在贮运包装条件下, 应符合 ZBY002 的规定, 其中高温试验选用+55℃; 低温试验选用 -40℃; 自由跌落高度选用 250mm。

5 试验方法

5.1 示值误差 (本标准第 4.1 条)

5.1.1 试验装置

- a. 色温为 2856K 光强工作基准灯膏套 (用于测定标准光照度计);
- b. 色温为 2856K 二级光强标准灯脊套 (用于测定一、二、三级光照度计);
- c. 直流稳压电源及相应配套设备 (I.光强工作基准灯稳压电源要求:在30min 内电压变化不大于0.015%,电流变化不大于0.008%,II. 二级光强标准灯稳压电源要求:在30min 内电压变化不大于0.03%,电流变化不大于0.016%);
- d. 光度测量装置(由光度导轨、滑座、灯架、开口挡光屏及带度盘工作台等附件组成;光度导轨距离的测量设装不大于 0.1%);
 - e. 专用的光照度计**捡定装置。**

5.1.2 试验程序

对于标准光照度计的测量,采用光强工作基准灯。在光度导轨上安置光强工作基准灯和标准光照度 计的光度头,在两者之间安放若干开口挡光屏,以减小杂光的影响;在不同距离的位置上使光束垂直入 射至光度头影试面上。根据要求改变光源发光面至光度头测试面之间的距离,在光度导轨上读出两者之 原的距离,按公式(1)求出光照度标准值,同时读出光照度计的指示值。按公式(2) 计算示值误差:

$$E_1 = \frac{1}{r^2} + \cdots + \cdots + \cdots$$
 (1)

$$\Delta E_i = (\frac{E_i'}{E_i} - 1) \times 100\% \quad \cdots \qquad (2)$$

式中: I---色温为 2856K 基准灯的发光强度, cd;

r.——光源发光面到光度头测试面之间的距离, m:

Ei--光照度标准值, lx;

Ei'---光照度计的指示值, lx;

ΔEi----示值误差。

測定时,要求光源发光面到光度头的最小距离应大于光源发光面(或光度头测试面)最大尺寸的 15 倍;光照度计每一档从低示值到满量程至少要测定五个等间隔点;每台光照度计测定两轮,两轮测定结果的相对误差不超过 0.6%,每个点取平均值作为每点测定结果。

对于一、二、三级光照度计,采用二级光强标准灯,测定方法同上,两轮测定结果的相对误差分别不超过 1%、1.5%、2%;也可在专用的光照度计检定装置上与标准光照度计进行比较测量。

- 5.2 光度头滤光器的 V(λ) 匹配误差(本标准第 4.2 条)
- 5.2.1 试验装置
 - a. 稳定的光源;
 - b. 直流稳压电源及相应配套设备;
 - c.标准探测器及相应配套的电测设备;
 - d. 单色仪及相应的附件。

5.2.2 试验程序

采用 CIE TC2.2 技术报告(CIE, No.64)中第一部分关于"相对光谱响应度函数的测量"中的直接比较法,如图 1 。

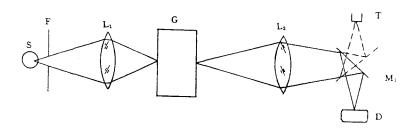


图 1 二位转镜直接比较法

S — 稳定光源; F — 光栏; L₁, L₂ — 聚光镜; G — 单色仪; M₁ — 反射镜(可转动); T — 标准探测器; D — 被测光度头

单色仪工作波长范围为 380~780nm; 波长定标精度为 ±0.5nm; 波长至少每隔 10nm 测一次。 滤光器的 V(λ)匹配误差按公式(3)、(4)计算:

$$f_{1} = \frac{\int_{380}^{780} | S^{*}(\lambda) rel - V(\lambda) | d\lambda}{\int_{380}^{780} V(\lambda) d\lambda} \times 100\% \cdots (3)$$

$$S^{*}(\lambda) rel = \frac{\int_{380}^{780} S_{A}(\lambda) V(\lambda) d\lambda}{\int_{380}^{780} S_{A}(\lambda) S(\lambda) rel d\lambda} \times S(\lambda) rel \cdots (4)$$

式中: S_A(A)——色温为 2856K 光源的相对光谱功率分布(见附录 A);

V(λ)----CIE 明视觉光谱光视效率(见附录 A);

S*(λ)rel----归一化了的相对光谱响应度;

S(λ)rel---以任意参考点作标准时的相对光谱响应度;

λ----波长, nm;

f1---滤光器的 V(λ)匹配误差。

在保证测量准确度的条件下,也可采用其他方法,如直接比较法的光纤分束法或替代法。

- 5.3 方向性响应总误差(本标准第4.3条)
- 5.3.1 试验装置

同本标准第 5.1.1 条 a~d。

5.3.2 试验程序

将光度头置于光度测量装置带有度盘的工作台上,光度头测试面的中心应位于工作台转轴的轴线上,并使光束垂直入射至光度头测试面上;光源发光面到光度头的最小距离应大于光源发光面(或光度头测试面)最大尺寸的15倍。在光度导轨上改变两者距离,使光照度计的指示值达到满量程的2/3以上,在此位置上作为光照度计的0°指示值;然后转动工作台,改变光线的入射角度,分别读出5°、10°、15°、20°、25°、30°、35°、40°、45°、50°、55°、60°、65°、70°、75°、80°、85°时光照度计在各角度下相应的指示值。按公式(5)、(6)计算方向性响应总误差:

$$f_2 = \int_{0^+}^{15^+} |f_2(\varepsilon, 0^*)| \sin(2\varepsilon) d\varepsilon \cdots (5)$$

$$f_2(\varepsilon, \Phi) = \left[\begin{array}{c} Y(\varepsilon, \Phi) \\ \overline{Y(0^*, \Phi) \cos \varepsilon} \end{array} - 1\right] \times 100\% \cdots (6)$$

式中:

ε----入射光对光度头测试面法线的入射角。;

Φ--- 光度头绕测试面法线旋转的方位角。;

 $Y(\varepsilon, \Phi)$ —— 光入射角为 ε 和方位角为 Φ 时光照度计的指示值, lx;

 $Y(0^{\bullet}, \Phi)$ ——光垂直射至测试面上,方位角为 Φ 时光照度计的指示值。lx:

f2(ε.Φ)----光入射角为 ε 和方位角为 Φ 时所引起的误差;

 $f2(\epsilon, 0^*)$ ——光入射角为 ϵ 和方位角为 0^* 时所引起的误差;

fa---方向性响应总误差。

- 5.4 红外响应误差 (本标准第 4.4 条)
- 5.4.1 试验装置
 - a. 同本标准第 5.1.1 条 a~d:
 - b. 已标定光谱透射比的 HBsse 透红外玻璃片 (厚度为 1mm)。

5.4 2 试验程序

在光度导轨上光源与光度头的测量位置之间放置 HB_{soo} 透红外玻璃片,分别测出有、无 HB_{soo} 透红外玻璃片两种情况下光照度计的指示值,按公式(7)、(8)计算红外响应误差:

$$f_3 = \left| \frac{Y(IR)}{Y} - ro \right| \times 100\% \cdots (7)$$

$$\mathbf{ro} = \frac{\int_{380}^{780} S_A(\lambda) \tau_{IR}(\lambda) V(\lambda) d\lambda}{\int_{380}^{780} S_A(\lambda) V(\lambda) d\lambda} \qquad (8)$$

式中: τισ(λ)----HB ωω 透红外玻璃片的光谱透射比;

Y(IR)——有 HB, 透红外玻璃片时光照度计的指示值, lx;

Y--- 无 HB ... 透红外玻璃片时光照度计的指示值, lx;

- 5.5 紫外响应误差 (本标准第 4.5 条)
- 5.5.1 试验装置
 - a. 同本标准第 5.1.1 条 a~d;
 - b. 已标定相对光谱功率分布的黑光灯(或氘灯)及配套的稳压电源;
 - c. 已标定光谱透射比的 ZWB1 透紫外玻璃片(厚度为 2mm)。
- 5.5.2 试验程序

在光度导轨上光源与光度头的测量位置之间放置 ZWB, 透紫外玻璃片, 分别测出有、无 ZWB; 透紫外玻璃片两种情况下光照度计的指示值, 按公式(9)、(10) 计算紫外响应误差:

$$f_{\bullet} = \left| \frac{Y(UV)}{Y} \right| - U_0 \times 100\% \dots (9)$$

$$U_{0} = \frac{\int_{300}^{700} S(\lambda) \tau_{UV}(\lambda) V(\lambda) d\lambda}{\int_{300}^{700} S(\lambda) V(\lambda) d\lambda}$$
 (10)

式中: $S(\lambda)$ ——黑光灯(或氘灯)的相对光谱功率分布:

τω(λ)---ZWB、透紫外玻璃片的光谱透射比;

Y(UV)---有 ZWB, 透紫外玻璃片时光照度计的指示值, lx;

Y---无 ZWB₁ 透紫外玻璃片时光照度计的指示值, lx;

Uo---ZWB、诱紫外玻璃片与黑光灯(或氘灯)组合的积分透射比;

f. ——紫外响应误差。

- 5.6 疲劳误差 (本标准第 4.6 条)
- 5.6.1 试验装置

同本标准第5.1.1条 a~d。

5.6.2 试验程序

在光度导轨上调节光**源与光度**头的距离, 使光度头在接受近 10001x 照度的条件下, 照射 10x 时读出光照度计的指示值, 然后继续照射至 30mm 时读出光照度计的指示值, 按公式(11)计算疲劳误差。

式中: Y(30min) -- 照射 30min 时光照度计的指示值, lx

Y(10s)---照射 10s 时光照度计的指示值, lx;

fs----疲劳误差。

- 5.7 非线性误差 (本标准第 4.7条)
- 5.7.1 试验装置

同本标准第 5.1.1 条 a~d。

5.7.2 试验程序

在光度导轨上调整光源发光面至光度头侧试面的距离,求出相当于光照度计满量程时的光照度标准值 Xmax,同时读出光照度计的指示值 Ymax,然后移动光度头(或光源)至 1/10 满量程的位置上,求出光照度标准值 X,并读出光照度计的指示值 Y。至少应测量 1000lx 量程以下各档的非线性误差。按公式(12)计算各档的非线性误差:

$$f_6 = (\frac{Y}{Y_{max}} \times \frac{X_{max}}{X} - 1) \times 100\% \dots (12)$$

式中: Y---1/10 满量程时光照度计的指示值。lx:

Ymax——满量程时光照度计的指示值.lx:

X--1/10 满量程时的光照度标准值, lx;

Xmax——满量程时的光照度标准值, lx;

f. ——线性误差。

- 5.8 换档误差 (本标准第 4.8 条)
- 5.8.1 试验装置

同本标准第 5.1.1 条 a~d。

5.8.2 试验程序

在光度导轨上调整光源发光面至光度头测试面的距离,求出相当于光照度计在低量程(A档)满量程90%时光照度标准值X(A),并读出光照度计的指示值Y(A);然后在光度导轨上移动光度头(或光源),至照度标准值比XA增加K倍的位置上,将光照度计转换至B档,并读出指示值Y(B),按公式(13)计算换档误差:

式中:Y(A)——在 A 档时,对应 X(A)光照度计的指示值, Ix:

Y(B)——在 B 档时, 对应 kX(A)光照度计的指示值, lx;

k----换档标称倍数(若量程开关在1:10 的位置,则 k=10);

f----换档误差。

- 5.9 示值再现性(本标准第第4.9条)
- 5.9.1 试验装置

同本标准第 5.1.1 条。

5.9.2 试验程序

在恒定照度近 10001x **的条件**下,首次读出光照度计的指示值。然后将光度头遮住,过 10min 后再次读出光照度计的指示值。按公式(14)计算示值再现性。

$$f_{\delta} = (1 - \frac{Ymin}{Ymax}) \times 100\% \cdots (14)$$

式中:Ymin---两次读数中小的指示值,lx:

Ymax——两次读数中大的指示值, lx:

f,----示值再现性。

- 5.10 零点飘移 (本标准第 4.10 条)
- 5.10.1 试验装置

同本标准第5.1.1条。

5.10.2 试验程序

仪器处于最小量程档工作状态时,在光照度计的光度头不受光照射的条件下,先调整零位,然后观 察在 30min 内光照度计对零位的最大偏离量 △Y。按公式(15) 计算零点飘移误差:

式中: △Y — 光照度计对零位的最大偏离量, lx:

Y--光照度计该档的满量程值, lx;

f, --- 零点飘移误差。

- 5.11 温度系数 (本标准第 4.11 条)
- 5.11.1 试验装置
 - a. 同本标准的第5.1.1条 a~c:
 - b. 温度控制器。
- 5.11.2 试验程序

将光照度计置于温度控制器内,指示器朝着窗外;标准灯放在温度控制器外边照射光度头;控制标 准灯的电流不变, 并保持光照度计和光源的相对位置一定; 将温度分别控制在 5℃、20℃、40℃, 每挡温 度保持一小时后读出光照度计的指示值,然后按公式(16)计算。

$$\alpha = \frac{Y(T_1) - Y(T_2)}{Y(T_0)} \times \frac{1}{T_1 - T_2} \times 100\% \cdots (16)$$

式中: T₁---高温, 取 40℃;

T₂---低温, 取5℃;

T。---常温, 取 20°C;

Y(T₁)——40℃时光照度计的指示值, lx:

 $Y(T_2)$ — 5℃ 时光照度计的指示值, lx:

Y(T_a)---20℃时光照度计的指示值, lx:

α--温度系数。

5.12 仪器外观和感官要求 (本标准第 4.12 条)

目视和手感检查。

5.13 电气安全性能(本标准第 4.13 条)

按 JB5517 的规定进行试验。

5.14 贮运和环境条件 (本标准第 4.14条) 按 ZBY002 的规定进行试验。

- 6 检验规则
- 6.1 检验分类

产品的检验分为出厂检验和型式检验。

- 6.2 出厂检验
- 6.2.1 出厂检验抽样检查应按 GB2828 的一次抽样检查。
- 6.2.2 出厂检验的项目分组,检查水平(IL)和合格质量水平(AQL)应符合表 12 规定。

表 12

不合格类别	项目	AQL	IL
A	4.1, 4.8, 4.13	2.5	
В	4.2~ 4.7, 4.9, 4.10	4.0	П
С	4.11, 4.12	10	

- 6.2.3 出厂检验不合格的批应退回车间,进行 100% 的检查后,重新提交时执行 GB2828 规定的转移规则。
- 6.3 型式检验
- 6.3.1 型式检验一般定为每年进行一次;产品在下列情况之一时,亦应进行型式检验;
 - a. 新产品或老产品转厂生产的试制定型鉴定;
 - b. 正式生产后,如结构、材料、工艺有较大改变,可能影响产品性能时;
 - c.正常生产时, 定期或积累一定产量后, 应周期性进行一次检验;
 - d.产品长期停产后, 恢复生产时;
 - e. 出厂检验结果与上次型式检验有较大差异时;
 - f. 国家质量监督机构提出进行型式检验的要求时。
- 6.3.2型式检验应包括本标准中所规定的全部试验项目,型式检验的样品应从出厂检验合格的产品中 随机抽取。
- 6.3.3 型式检验的抽样采用 GB2829 中一次抽样检查。型式检验的项目分组, 判别水平(DL)不合格质量水平(RQL)和抽样方案应符合表 13 规定。

表 13

不合格类别	项 目	RQL	抽样方案	DL
A	4.1, 4.8, 4.13	30	Ac=0 Re=1	
В	4.2~ 4.7, 4.9, 4.10	65	Ac=1 Re=2	I
С	4.11, 4.12, 4.14	100	Ac=2 Re=3	

7 标志、包装、运输、贮存

7.1 标志

- 7.1.1 产品标志
 - a.产品名称;
 - b.产品型号和编号;
 - c.制造厂名和商标;
 - d.制造年月。
- 7.1.2 包装标志

仪器的包装标志应符合 ZBY003 的要求。

- 7.2 包装
- 7.2.1 仪器的包装应符合 ZBY003 的要求。
- 7.2.2 仪器应附有产品的合格证书。
- 7.3 运输

仪器应由有遮蔽的运输工具运送。

7.4 贮存

仪器贮存环境应通风。周围无酸 碱 强磁场及其他有害物质。带包装的仪器应贮存在有遮蔽的场所。周围无酸、碱、强磁场及其他有害物质。

附录 A 色温为 2856K 光源的相对光谱功率分布 SA(λ)及 CIE 明视觉光谱光视效率 V(λ)表 (补充件)

SA(λ)及 V(λ)表

波长	SA(\lambda)	V(λ)	波长	SA(\lambda)	V(λ)	波长	SA(\lambda)	$V(\lambda)$
(nm)			(nm)			(nm)		
380	9.80	0.0000	515	69.25	0.6082	650	165.03	0.1070
385	10.90	0.0001	520	72.50	0.7100	655	168.51	0.0816
390	12.09	0.0001	525	75.79	0.7932	660	171.96	0.0610
395	13.35	0.0002	530	79.13	0.8620	665	175.38	0.0446
400	14.71	0.0004	535	82.52	0.9149	670	178.77	0.0320
405	16.15	0.0006	540	85.95	0.9540	675	182.12	0.0232
410	17.68	0.0012	545	89.41	0.9803	680	185.43	0.0170
415	19.29	0.0022	550	92.91	0.9950	685	188.70	0.0119
420	20.99	0.0040	555	96.44	1.0000	690	191.93	0.0082
425	22.79	0.0073	560	100.00	0.9950	695	195.12	0.0057
430	24.67	0.0116	565	103.58	0.9786	700	198.26	0.0041
435	26.64	0.0168	570	107.18	0.9520	705	201.36	0.0029
440	28.70	0.0230	575	110.80	0.9154	710	204.41	0.0021
445	30.85	0.0298	580	114.44	0.8700	7 15	207.41	0.0015
450	33.09	0.0380	585	118.08	0.8163	720 ·	210.36	0.0010
455	35.41	0.0480	590	121.73	0.7570	725	213.27	0.0007
460	37.81	0.0600	595	125.39	0.6949	730	216.12	0.0005
465	40.30	0.0739	600	129.04	0.6310	735	218.92	0.0004
470	42.87	0.0910	605	132.70	0.5668	740	221.67	0.0002
475	45.52	0.1126	610	136.35	0.5030	745	224.36	0.0002
480	48.24	0.1390	615	139.99	0.4412	750	227.00	0.0001
485	51.04	0.1693	620	143.62	0.3810	755	229.59	0.0001
490	53.91	0.2080	625	147.24	0.3210	760	232.12	0.0001
495	56.85	0.2586	630	150.84	0.2650	765	234.59	0.0000
500	59.86	0.3230	635	154.42	0.2170	770	237.01	0.0000
505	62.93	0.4073	640	157.98	0.1750	775	239.37	0.0000
510	66.06	0.5030	645	161.52	0.1382	780	241.68	0.0000

附加说明:

本标准由机械工业部提出。

本标准由上海光学仪器研究所负责起草并归口。